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Chaotic thermovibrational flow in a laterally heated cavity
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~Received 23 December 1996; revised manuscript received 1 May 1997!

Period-doubling transitions to chaos, periodic windows, strange attractors, and intermittencies are observed
in direct numerical simulations of convection in a closed cavity with differentially heated vertical walls. The
cavity contains a Newtonian-Boussinesq fluid and is subject to horizontal oscillatory displacements with a
frequency V. The transitions occur through a sequence of bifurcations that exhibit the features of a
Feigenbaum-type scenario. The first transition from a single-frequency response to a two-frequency response
occurs through a parametric excitation of the subharmonic modeV/2 by the driving frequencyV. Bifurcation
diagrams also exhibit periodic windows and reveal the self-similar structure of the ‘‘period-doubling tree.’’
Intermittent flows show characteristics corresponding to a Pomeau-Manneville type-I intermittency.
@S1063-651X~97!03910-X#

PACS number~s!: 03.40.Gc, 47.20.Ky, 47.20.Bp, 47.52.1j
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I. INTRODUCTION

Patterson and Imberger first reported an oscillatory
proach to steady flow in a cavity subject to differential late
heating@1#. The oscillations corresponded to damped int
nal gravity waves that arose when fluid from the vertic
boundary layers intruded along the horizontal walls. T
behavior was later explained as the result of internal hydr
lic jumps @2#. Later work focused on the nature of flow tra
sitions @3–7# and there has been some discussion on
mechanism responsible for the first transition to oscillat
flow. From the results of their numerical simulations, Ch
noweth and Paolucci@3# suggested that hydraulic jump
were also responsible for the first transitions from steady
time-dependent flow. From the results of a detailed anal
of the corner flow structure, Ravi, Henckes, and Hoog
doorn@4# concluded that the flow did not have the charac
of an internal hydraulic jump, and that a thermal mechan
originating in the vertical boundary layers was responsib
In later work, Paolucci and Chenoweth@5# examined transi-
tions to chaos in a differentially heated vertical cavity a
found a second instability occurring in the vertical bounda
layers that resulted in oscillations with frequencies that co
pared well to those predicted by Gill and Davey@6#. The
question of the nature of the instability mechanisms resp
sible for the two instabilities was revisited by Janssen a
Henckes@7#. They found a Prandtl number dependence
the transitions. For 0.25,Pr,2.0, they observed a transitio
from laminar to chaotic flow through intermediate period
and quasiperiodic regimes as proposed by Ruelle and Ta
@8#. At higher Prandtl numbers, no such intermediate regim
were found. They suggested that the transition from
steady to the periodic regime occurs through a shear-dr
Kelvin-Helmholtz-type instability. The second transitio
from periodic to quasiperiodic flow, appears to originate
the vertical boundary layers. Discrepancies between res
obtained at Pr.0.71 and the instability of the natural con
vection boundary layer at an isolated vertical plate sugg
that the second transition is also shear driven. In previ
work on transitions to chaotic flows in differentially heate
cavities with adiabatic horizontal walls@5,7,9#, all such tran-
561063-651X/97/56~4!/4152~5!/$10.00
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sitions are characterized by large Rayleigh numbers
.108). In this work we show that when the cavity is subje
to lateral oscillatory translations, we obtain transitions
chaos at Ra5104.

Vertical oscillatory translations result in the appearance
an effective body force of the formg5g01g1 sinvt where
g15bv2, v is the angular frequency, andb corresponds to
the displacement amplitude. The stability of a layer of flu
of infinite extent and heated from below, or above, is
fected by gravity modulation~or vibration! and has received
a limited amount of attention for the case of sinusoida
modulated gravity or vibration@10–14#. The oscillatory dis-
placement of the rigid-walled container is accounted for
transforming the equations of motion to a frame of referen
in which the container is stationary. In the well-known ca
for heating from below and with«50, the first bifurcation
threshold occurs at a critical value of the Rayleigh numb
Rac , and convective motion ensues. For nonzerog1 the sys-
tem can always be stabilized in some region of theb-v plane
for Rayleigh numbers in excess of Rac . This case is analo-
gous to the case of an inverted rigid pendulum with an
cillating support point. On the other hand, the case of hea
from above, for which the nonconvecting state is stable wh
«50, is destabilized for some range ofb-v with larger b
andv being the most destabilizing. For heating from belo
the response of the flow as the vibration amplitude is
creased evolves through synchronous to subharmonic
ultimately, relaxation oscillations@10,13#.

In recent experimental work on the effect of vibration o
the Rayleigh-Be´nard problem, Ishikawa and Kamei@15# ob-
served quasiperiodic flows at 40 Rac . They simulated their
experiments using a Lorenz model. As the frequency w
increased at fixed modulation amplitude at values of Ra
about Rac , they found transitions from two-periodic to qua
siperiodic and chaotic flows.

The effect of vibration on a convective motion has al
been studied for the case of a differentially heated squ
cavity @16–18#. Farooq and Homsy@16# considered gravity
modulation as a perturbation to steady gravity and found
for certain parametric conditions the periodic modulation
4152 © 1997 The American Physical Society
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56 4153CHAOTIC THERMOVIBRATIONAL FLOW IN A . . .
teracts with instabilities associated with the base flow. T
interaction produces resonances that increase in streng
Ra increases and also depends on the Prandtl number.
time-periodic forcing results in a streaming phenomen
where the flow can be separated into a mean part plu
time-dependent solution. The mean part of the flow is g
erally a combination of the flow that would persist at that
in the absence of gravity modulation and the mean flow g
erated by the periodic forcing. In full numerical simulation
Fu and Shieh@17# found that the strength of the resona
interactions is also dependent on the modulation amplitu
In later work, Farooq and Homsy@18# observed that para
metric resonance in a gravity modulated differentially hea
slot occurs in association with excitation of internal wav
and leads to instability in the flow. The calculated stabil
boundary depends on the frequency and magnitude of
modulation amplitude. The minimum value of the modu
tion amplitude at which instability was found, in a remar
able analogy to the stability boundaries of the Mathieu eq
tion, to correspond approximately to forcing frequencies
2VR , VR , 2VR/5, etc., whereVR corresponds to the funda
mental resonant frequency of the system.

The mechanism for parametric resonance for the differ
tially heated slot appears to be a resonance between
forced oscillation of the basic flow and the free oscillatio
of stable perturbations of the time averaged flow. Farooq
Homsy @16,18# proposed that these oscillations are char
terized by the Bru¨nt-Väisäla frequency which represents th
maximum possible frequency that can be supported b
stableoscillating stratified fluid@19#.

In contrast to earlier studies, which involved modulati
of the gravity vector, we examine the effect of oscillato
horizontal translations of a square cavity with differentia
heated vertical walls using direct numerical simulations
the Navier-Stokes-Boussinesq equations. These simula
show that at high enough forcing amplitudes and certain
quencies a region of instability develops which leads to s
harmonic cascades, intermittencies, and other chaoticlike
havior. In the absence of vibration, such behavior would o
be expected at values of the Rayleigh number several or
of magnitude higher than the value considered here. Thu
appears that lateral vibration of the cavity leads to an e
transition to chaos.

II. GOVERNING EQUATIONS

The cavity is subject to large amplitude horizontal acc
erations of the formbv2 sin(vt)i, whereb and v are the
oscillation amplitude and frequency andi is a horizontal unit
vector. The equations were formulated in a moving frame
reference in which the oscillatory translations appeared
time-dependent body force in the momentum equatio
Length, time, velocity, and temperature scales were take
beL, L2/k, L/k, andDT, whereL, k, andDT are the cavity
length, the thermal diffusivity, and the horizontal tempe
ture differential, respectively. This leads to the dimensionl
body forces

Pr RaT~x,t !j1F sin~Vt !T~x,t !i. ~1!

HereT(x,t) is the temperature at a pointx at time t, and j ,
V, and Ra5gbDTL3/vk are the vertical unit vector, dimen
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sionless frequency, and Rayleigh number, respectively,
F5VA2RavPr, where Rav5(bvbDTL)2/2vk is the vibra-
tional Rayleigh@11# number and Pr is the Prandtl numbe
The product (RavPr)1/2 represents the ratio of the characte
istic times for heat diffusion and average fluid motion due
vibration. The equations governing the transport of ma
momentum, and heat take the form

“•u50, ~2!

1

Pr S ]u

]t
1u•“uD52“p1¹2u1Ra Tk

1VA2Rav /Pr sin~Vt !Ti, ~3!

]T

]t
1u•“T5¹2T. ~4!

Here u5u(x,t) and p, are, respectively, the velocity an
pressure. The velocity vanishes on the rigid cavity walls.

III. SOLUTION METHOD

The governing equations were solved in a vorticit
streamfunction form using a pseudospectral Chebyshev
location method@20–22#. Time discretization is achieved us
ing an Adams-Bashforth–second-order backward Eu
scheme@20,22# while the spatial dependence of the vortici
and pressure is approximated using collocated Chebys
polynomials. The problem of vorticity boundary condition
was surmounted by employing an ‘‘influence matr
method’’ described in detail in Ref.@21#. Selected~non-
trivial! cases were repeated using the spectral element
NEKTON @23# to assess the fidelity of the results.NEKTON

employs an implicit scheme for viscous and diffusive ter
and an explicit third-order scheme for inertial and sou
terms. All cases compared were found to be in good ag
ment.

IV. RESULTS

Our results for Ra5104 and Pr50.71 are summarized in
Fig. 1. Observed flow regimes included a quasisteady~I!
regime, where inertial effects are negligible, an oscillato
regime~II ! where the velocity is out of phase with the driv
ing force, and an asymptotic regime~III ! where inertial ef-
fects dominate and the flow oscillates with small amplitu
about the mean flow. A fourth regime, which first appears
F>F* 54.363104 for 106,V,112, is characterized by
subharmonic cascades and chaotic behavior. The edge
second region of instability was also detected at largeF
values forV'87.

For F,F* , the response in regimes I–III is characteriz
by single-frequency oscillations. ForF.F* there is a band
of frequencies for which marked transitions in the flow a
observed. This band increases in width as Rav ~and thusF!
increases. For a given frequency in this band, the region
instability is contained between two values ofF. As the
region is entered from below, there is a sequence of sub
monic bifurcations leading to chaos which exhibit propert
characteristic of a Feigenbaum-type scenario. At the up
limit of the region the behavior is typically characterized
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4154 56ARNAUD LIZÉE AND J. IWAN D. ALEXANDER
intermittencies. Upon exiting the unstable region the flow
again monoperiodic and has a frequency equal to the for
frequency.

Figure 2 is a bifurcation diagram obtained from Poinca´
sections of a vertical velocity component forV5152 and

FIG. 1. Flow regimes for the Ra5104, Pr50.71 case as a func
tion of F5VA2RavPr andV. The solid line is an estimate of th
location of the boundary of the unstable region. Note the edge
second unstable region atV587 for F;105. ~All cases shown asD
lie within regions of instability.! I—quasisteady regime, II—
oscillatory regime, III—asymptotic regime.

FIG. 2. ~a! Bifurcation diagram showing vertical velocity value
from a fixed location taken from Poincare´ sections for different
values of Rav and V5152; ~b! detail for 5.9,1024 Rav,6.0.
A—one-frequency response;B—subharmonic cascade;C—strange
attractor;D—periodic window;E—intermittency.
s
g

e

different values of Rav . For Rav,3.943104 the velocity
exhibits a single-frequency response. At higher Rav there is a
subharmonic cascade. Within the subharmonic cascade
found the locations,sk , of the superattractive points betwee
the V/2, V/4, V/8, andV/16 bifurcations~herek51,2,3,...
corresponds to periodic cycles withV/2, V/4, V/8, etc.!. We
then computed the valuesdk5(sk2sk21)/(sk212sk22) of
the first two iterates of the Feigenbaum sequence. We fo
d154.9491 andd254.9104. This compares well with th
values 4.460.1 obtained in experiments with mercury@24#
and with the theoretical valued`54.6692 ask→` @25#.

In the regions markedC, the characteristics of the re
sponse suggest the existence of a strange attractor. To in
tigate this further we followed the phase-space trajecto
computed for Rav55.83104 and determined the existence
a positive Lyapunov exponent. In addition, inspection of t
Poincare´ sections~e.g., Fig. 3! for this case shows points tha
condense to form a well-defined pattern. This implies
existence of a negative Lyapunov exponent@26#. A positive
Lyapunov exponent is the signature of a chaotic state whi
negative Lyapunov exponent causes a contraction of the
tractor in phase space. Their simultaneous existence is c
acteristic of a strange attractor@27#. An estimate of the at-
tractor’s fractal dimension, the box counting dimensionDb
@27#, was computed at two different locations. We fou
Db52.11 and 2.2. The computation used to generate the
from which Db was computed was carried out for 300 00
time steps corresponding to 750 periods of the driving f
quency.

In the interval 5.93104,Rav,63104 we found a
period-3 window@shown in detail in Fig. 2~b!#. Each of the
three points within the window undergoes a sequence
period-doubling bifurcations and a reverse cascade~note es-
pecially the period-3 window on each branch!. This mimics
the behavior of the bifurcation diagram on a larger scale
reflects its self-similar nature. As Rav is further increased
there are more periodic windows (D) and chaotic regimes
(C). Finally, at Rav5105, type-I intermittencies@27# (E)
were found. Theoretically, the numberN of ‘‘periodic or
laminar phases’’ between intermittent bursts should be p
portional to«21/2 @28#. Here«5Rav2Rav,c and the transi-
tion from oscillatory to intermittent flow occurs at Rav,c . We
examined this as follows. First we obtainedd, the shortest
distance between the closest point of a first return map~see

a

FIG. 3. Poincare´ section for the temperature at a point in th
cavity for Rav558 000,V5152.
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56 4155CHAOTIC THERMOVIBRATIONAL FLOW IN A . . .
Fig. 4! to the diagonaluk115uk , for different values of
Rav . Rav,c was then obtained by linear regression~see inset
in Fig. 4!. As d approaches zero,N approaches infinity, i.e.
there is a transition from an intermittent to a periodic
sponse. For each Rav , we determinedN, and found thatN
}«20.53.

We isolated the flow and temperature modes using F
rier time-series analysis at each spatial location. Figure
and 6 show, respectively, the thermalV andV/2 modes for
the case Rav54.23104 and V5152, i.e., inside the region
of instability shown in Fig. 2. TheV mode consists of two
waves that travel toward the cavity center from the up
right ~cold! and lower left~hot! corners. The cavity center i
a node and the diagonal connecting the upper hot corner
the lower cold corner is roughly a nodal line. The therm
V/2 mode, in contrast, rotates around the cavity in a clo
wise sense. As Rav is increased above 3.943104, perturba-
tions to the thermalV mode lead to the transfer of hot an
cold packets across theV-mode nodal line. These packe
rotate around the cavity requiring two periods of theV-mode
oscillation to complete their cycle. However, when the cav

FIG. 4. First return map for a velocity component at a fix
location. Inset shows the dependence ofd on Rav .

FIG. 5. The temperature modeTV(x)cos@Vt1fV(x)# at Vt
50, p/2, 3p/4, p, 3p/2, and 7p/4 for Rav542 000. A traveling
wave moves from the corners toward the center. The left-hand
is the hot wall.
-

u-
5

r
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l
-

is actually driven atV576, we found that the thermalV
mode appears as a standing wave with an approximately
tical nodal line which cuts the cavity in half. We conjectu
that, at the first period-doubling transition, this lower fr
quency mode is parametrically excited and the resulting n
linear interaction with theV mode leads to a disturbance th
travels around the cavity.

V. DISCUSSION

In summary, we have observed transitions to chaotic fl
in large amplitude thermovibrational convection in a latera
heated square cavity subject to vertical gravity. The init
period-doubling transition appears to be due to a parame
excitation. The calculated period-doubling route to chaos
characteristic of a Feigenbaum-type scenario. Such route
chaos have been observed experimentally@28,29# and in hy-
drodynamic models~for example,@15,30–32#!. In the ab-
sence of the type of sinusoidal buoyant forcing examined
this paper, transitions to chaotic flow in the differential
heated cavity would be expected to take place at Rayle
numbers in excess of 108. There are only a few examples o
direct numerical solutions of the Navier-Stokes equatio
that have examined transitions to chaos in differentia
heated cavities@5,8,9#. These works have focused more o
determining the mechanisms for steady to periodic and p
odic to quasiperiodic transitions and do not attempt a
tailed characterization of the path toward chaotic flow. It h
been shown@33# that, for discrete-time approximations to th
Navier-Stokes equations, one should observe the univers
scaled accumulation of period-doubling bifurcations. Ho
ever, we are unaware of any previous results based on d
numerical simulations of flows in differentially heated cav
ties that have been able to capture the details of a per
doubling bifurcation sequence including period-3 windo
and clear evidence of a self-similar structure to the bifur
tion. We found that, in the presence of sinusoidal forcin
early transitions~that is, at relatively low values of Ra! to
chaos occur through a sequence of bifurcations that exh
the features of a Feigenbaum-type scenario. The first tra
tion from a single-frequency response to a two-frequen
ll

FIG. 6. The temperature modeTV/2(x)cos@ 1
2Vt1fV/2(x)# at

Vt50, p/2, p, 2p, 5p/2, and 3p/2 for the temperature at Rav
542 000. The disturbance rotates around the cavity in a clockw
sense. The left-hand wall is the hot wall.
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4156 56ARNAUD LIZÉE AND J. IWAN D. ALEXANDER
response occurs through a parametric excitation of the
harmonic modeV/2 by the driving frequencyV. In addition
to the period-doubling bifurcation sequences we also fo
intermittent behavior near the upper boundary of the unsta
region. These flows show characteristics corresponding
Pomeau-Manneville type-I intermittency. While it might b
argued that the discretization methods may be respons
for the observed behavior we emphasize that two enti
different methods were used to obtain these results. We
emphasize that these flows cannot be considered in term
a small perturbation superimposed on a mean flow tha
close to the Rav50 flow. Indeed, the mean flow and tem
perature fields are quite different from the Rav50 fields and
the oscillation amplitudes too large to neglect nonlineariti
J

ll
b-

d
le
a

le
ly
so
of
is

.

The results of this work and the accessibility of such flows
computational simulation reveal the richness of thermovib
tional flows as a fruitful area of research on nonlinear flu
dynamics.
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M. Homsy and J. Viñals for useful discussions.
en-

f

@1# J. C. Patterson and J. Imberger, J. Fluid Mech.100, 65 ~1980!.
@2# G. N. Ivey, J. Fluid Mech.144, 389 ~1984!.
@3# D. R. Chenoweth and S. Paolucci, J. Fluid Mech.169, 173

~1986!.
@4# M. R. Ravi, R. A. W. M. Henckes, and C. J. Hoogendoorn,

Fluid Mech.262, 325 ~1994!.
@5# S. Paolucci and D. R. Chenoweth, J. Fluid Mech.20, 379

~1989!.
@6# A. E. Gill and A. Davey, J. Fluid Mech.35, 775 ~1969!.
@7# R. J. A. Janssen and R. A. W. M. Henckes, J. Fluid Mech.290,

319 ~1995!.
@8# D. Ruelle and F. Takens, Commun. Math. Phys.20, 167

~1971!.
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