PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997

Chaotic thermovibrational flow in a laterally heated cavity
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Period-doubling transitions to chaos, periodic windows, strange attractors, and intermittencies are observed
in direct numerical simulations of convection in a closed cavity with differentially heated vertical walls. The
cavity contains a Newtonian-Boussinesq fluid and is subject to horizontal oscillatory displacements with a
frequency ). The transitions occur through a sequence of bifurcations that exhibit the features of a
Feigenbaum-type scenario. The first transition from a single-frequency response to a two-frequency response
occurs through a parametric excitation of the subharmonic nin@eby the driving frequency). Bifurcation
diagrams also exhibit periodic windows and reveal the self-similar structure of the “period-doubling tree.”
Intermittent flows show characteristics corresponding to a Pomeau-Manneville type-l intermittency.
[S1063-651%97)03910-X

PACS numbseps): 03.40.Gc, 47.20.Ky, 47.20.Bp, 47.53.

. INTRODUCTION sitions are characterized by large Rayleigh numbers (Ra
>10°). In this work we show that when the cavity is subject
Patterson and Imberger first reported an oscillatory apto lateral oscillatory translations, we obtain transitions to
proach to steady flow in a cavity subject to differential lateralchaos at Ra 10%.
heating[1]. The oscillations corresponded to damped inter-  vertical oscillatory translations result in the appearance of
nal gravity waves that arose when fluid from the verticalan effective body force of the form=g,+ g, sin wt where
boundary layers intruded along the horizontal walls. Thisy, —p 2 « is the angular frequency, ardcorresponds to

. . . 1
pehawor was later explained as the result of internal hydraug,o displacement amplitude. The stability of a layer of fluid
lic jumps[2]. Later work focused on the nature of flow tran- ¢ jnfinite extent and heated from below, or above, is af-

sitions [3_7] and thgre has beep some 'dllscussmn on th"f’ected by gravity modulatiofor vibration and has received
mechanism responsible for the first transition to oscnlatorya limited amount of attention for the case of sinusoidally

flow. From the results of their numerical simulations, Che- . ! : : .
noweth and Paolucci3] suggested that hydraulic jumps modulated gravity or vibratiofl0—14. The oscillatory dis-
é)lacement of the rigid-walled container is accounted for by

were also responsible for the first transitions from steady t forming th . ; _ ¢ f rof
time-dependent flow. From the results of a detailed analysi§rans orming the equations of motion to a frame of reference

of the corner flow structure, Ravi, Henckes, and Hoogenln which the container is stationary. In the well-known case
doorn[4] concluded that the flow did not have the characteror heating from below and witle =0, the first bifurcation

of an internal hydraulic jump, and that a thermal mechanismhreshold occurs at a critical value of the Rayleigh number,
originating in the vertical boundary layers was responsibleR& . and convective motion ensues. For nonzgydghe sys-

In later work, Paolucci and Chenowdi] examined transi- tem can always be stabilized in some region oftihe plane
tions to chaos in a differentially heated vertical cavity andfor Rayleigh numbers in excess of Ralhis case is analo-
found a second instability occurring in the vertical boundarygous to the case of an inverted rigid pendulum with an os-
layers that resulted in oscillations with frequencies that comcillating support point. On the other hand, the case of heating
pared well to those predicted by Gill and Davgsj. The from above, for which the nonconvecting state is stable when
guestion of the nature of the instability mechanisms respone =0, is destabilized for some range bfw with larger b
sible for the two instabilities was revisited by Janssen andndw being the most destabilizing. For heating from below,
Henckeg[7]. They found a Prandtl number dependence forthe response of the flow as the vibration amplitude is in-
the transitions. For 0.25Pr< 2.0, they observed a transition creased evolves through synchronous to subharmonic and,
from laminar to chaotic flow through intermediate periodic ultimately, relaxation oscillationgl0,13).

and quasiperiodic regimes as proposed by Ruelle and Takens In recent experimental work on the effect of vibration on
[8]. At higher Prandtl numbers, no such intermediate regimethe Rayleigh-Beard problem, Ishikawa and Kamei5] ob-
were found. They suggested that the transition from theserved quasiperiodic flows at 40 RaThey simulated their
steady to the periodic regime occurs through a shear-driveexperiments using a Lorenz model. As the frequency was
Kelvin-Helmholtz-type instability. The second transition, increased at fixed modulation amplitude at values of Ra of
from periodic to quasiperiodic flow, appears to originate inabout Ra, they found transitions from two-periodic to qua-
the vertical boundary layers. Discrepancies between resul&periodic and chaotic flows.

obtained at Pr0.71 and the instability of the natural con-  The effect of vibration on a convective motion has also
vection boundary layer at an isolated vertical plate suggedteen studied for the case of a differentially heated square
that the second transition is also shear driven. In previousavity [16—18. Farooq and Homs{16] considered gravity
work on transitions to chaotic flows in differentially heated modulation as a perturbation to steady gravity and found that
cavities with adiabatic horizontal wall$,7,9], all such tran-  for certain parametric conditions the periodic modulation in-
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teracts with instabilities associated with the base flow. Thisionless frequency, and Rayleigh number, respectively, and
interaction produces resonances that increase in strength Bs=(\2Rg Pr, where Rg=(bwBATL)?/2v k is the vibra-
Ra increases and also depends on the Prandtl number. Ttienal Rayleigh[11] number and Pr is the Prandtl number.
time-periodic forcing results in a streaming phenomenorThe product (RgPr)*2 represents the ratio of the character-
where the flow can be separated into a mean part plus @tic times for heat diffusion and average fluid motion due to
time-dependent solution. The mean part of the flow is genvibration. The equations governing the transport of mass,
erally a combination of the flow that would persist at that Ramomentum, and heat take the form
in the absence of gravity modulation and the mean flow gen-
erated by the periodic forcing. In full numerical simulations, V-u=0, (2
Fu and Shiel17] found that the strength of the resonant 104
interactions is also dependent on the modulation amplitude. u . 2
In later work, Farooq IC;nd Homsjy18] observed that pgra— Pr (EHJ'VU) =~ Vp+ViutRaTk
metric resonance in a gravity modulated differentially heated ] )
slot occurs in association with excitation of internal waves +QV2Rg /PrsinQH)Ti, (3
and leads to instability in the flow. The calculated stability
boundary depends on the frequency and magnitude of the iJru'VT:VzT (4)
modulation amplitude. The minimum value of the modula- at '
tion amplitude at which instability was found, in a remark- _ _
able analogy to the stability boundaries of the Mathieu equatiere u=u(xt) and p, are, respectively, the velocity and
tion, to correspond approximately to forcing frequencies ofPressure. The velocity vanishes on the rigid cavity walls.
2QRg, Qg, 2QR/5, etc., wherd) corresponds to the funda-
mental resonant frequency of the system. Ill. SOLUTION METHOD

The mechanism for parametric resonance for the differen- . . . -
. The governing equations were solved in a vorticity-
tially heated slot appears to be a resonance between t%?reamfunction form using a pseudospectral Chebyshev col-
forced oscillation of the basic flow and the free oscillations gap b y

of stable perturbations of the time averaged flow. Farooq an!? cation method20-22. Time discretization is achieved us-

Homsy [16,18 proposed that these oscillations are charac 9 an Adams-Bashforth—second-order backward Euler

terized by the Brot-Vaisda frequency which represents the schemd 20,23 while the spatial dependence of the vorticity
maximum possible frequency that can be supported b gnd pressure is approximated using collocated Chebyshev
stableoscillgting stratifigd quig[lg] P y polynomials. The problem of vorticity boundary conditions

In contrast to earlier studies, which involved modulationxZ‘:’hosdl,J,rrgg:gt%de d b|)r/1 deeTa?i:oi);:ngefznl] gglue ecrtlé:g(n(r)r;]a_\tnx
of the gravity vector, we examine the effect of oscillatory, .". . S

: . . ; . .7 trivial) cases were repeated using the spectral element code
horizontal translations of a square cavity with differentially

: . . . . . EKTON [23] to assess the fidelity of the resultsekToON
heated vertical walls using direct numerical simulations o e : e
X : . . .~ employs an implicit scheme for viscous and diffusive terms
the Navier-Stokes-Boussinesq equations. These simulations CLE o
: X : . and an explicit third-order scheme for inertial and source
show that at high enough forcing amplitudes and certain freferms Al cases compared were found to be in qood agree
guencies a region of instability develops which leads to sub- ' P 9 9
: . . . . ment.
harmonic cascades, intermittencies, and other chaoticlike be-
havior. In the absence of vibration, such behavior would only

be expected at values of the Rayleigh number several orders IV. RESULTS

of magnitude higher than the value considered here. Thus it o results for R& 10* and Pe=0.71 are summarized in
appears that lateral vibration of the cavity leads to an early;ig_ 1. Observed flow regimes included a quasisteédly
transition to chaos. regime, where inertial effects are negligible, an oscillatory
regime(Il) where the velocity is out of phase with the driv-
Il. GOVERNING EQUATIONS ing force, and an asymptotic reginiél ) where inertial ef-
The cavity is subject to large amplitude horizontal accel—;ebcotf'J tciﬁ':':]‘zt;ni?:wth: ;L%V:tk?fggli?rtlzsv\\llvr:'ﬁzhs;ir:gyaa:)rgggtrid:t
. 2 - . 1
erations of the formbw? sin(wt)i, whereb and » are the F=F* =436 10" for 106<0<112, is characterized by

oscillation amplitude and frequency an a horizontal unit bh . d d chaotic behavior. The ed f
vector. The equations were formulated in a moving frame ofubharmonic cascades and chaotic benhavior. the edge ot a

reference in which the oscillatory translations appeared as %econd region of instability was also detected at larger

time-dependent body force in the momentum e ua\tions\.’alues for()~87. . . . .
P y ik For F<F*, the response in regimes I-Ill is characterized

Length, time, velocity, and temperature scales were taken to " - it N X
by single-frequency oscillations. Fér>F* there is a band

bel, L%k, L/k, andAT, whereL, «, andAT are the cavity ; ; . )

length, the thermal diffusivity, and the horizontal tempera—Of frequenme_s for Wh.'Ch marke(_j tra_nsmons in the flow are

ture differential, respectively. This leads to the dimensionlesgbserved‘ This bar_1d Increases in .W'dth as kand thUSF?

body forces !ncrea_s.es..For a given frequency in this band, the region of
instability is contained between two values Bf As the

PrRaT(x,t)j+F sin(Qt)T(x,t)i. ) region is entered from below, there is a sequence of subhar-

monic bifurcations leading to chaos which exhibit properties

Here T(x,t) is the temperature at a poirtat timet, andj, characteristic of a Feigenbaum-type scenario. At the upper

Q, and Ra=gBATL3/vk are the vertical unit vector, dimen- limit of the region the behavior is typically characterized by
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_ different values of Ra. For Rg<3.94x 10" the velocity
~ FIG. 1. Flow regimes for the Ral0’, Pr=0.71 case as a func-  exhibits a single-frequency response. At highey Rere is a
tion of F=0Qy2RaPr and(. The solid line is an estimate of the sypharmonic cascade. Within the subharmonic cascade we
location of the boundary of the unstable region. Note the edge of 8,,,nd the locationss,, of the superattractive points between
second unstable region 8t=_87 for F~10°. (All cases shown ad the /2, Q/4, O/8, andQ/16 bifurcations(herek=1,2,3
lie within regions of instability. I—quasisteady regime, Il— Corresp,onds,to périodic cycles w2, /4, 0/8 etc,).,V\,/e
oscillatory regime, Ill—asymptotic regime. then computed the values,= (Sc—S_1)/(Sc_1—S_2) Of
, ) ) . ) . the first two iterates of the Feigenbaum sequence. We found
intermittencies. Upon exiting the unstable region the flow is | =4.9491 ands,=4.9104. This compares well with the
again monoperiodic and has a frequency equal to the forcmgalues 4.4 0.1 obtained in experiments with mercuig4]
freql_Jency. . ) . . . o and with the theoretical valué,=4.6692 ak—c [25].
Figure 2 is a bifurcation diagram obtained from Poincare In the regions markec, the characteristics of the re-
sections of a vertical velocity component far=152 and sponse suggest the existence of a strange attractor. To inves-
tigate this further we followed the phase-space trajectories
3 . . . . ' . . computed for Rg=5.8x 10* and determined the existence of
0o 152 IR a positive Lyapunov exponent. In addition, inspection of the
2 7 , ' ” i y Poincaresectiongle.g., Fig. 3 for this case shows points that
.t 3||||Ih ” | . N condense to form a well-defined pattern. This implies the
A '
B
¢ 5 i i

-t
T

> existence of a negative Lyapunov expong2fi]. A positive
A Lyapunov exponent is the signature of a chaotic state while a
3 negative Lyapunov exponent causes a contraction of the at-

Q.‘ tractor in phase space. Their simultaneous existence is char-

- 4 acteristic of a strange attractfi27]. An estimate of the at-

DC E tractor’s fractal dimension, the box counting dimensiog
Byt ¢ 7 & % ~36 11 [27], was computed at two different locations. We found
10 Ra, Dp=2.11 and 2.2. The computation used to generate the data
2.0 , : from which D, was computed was carried out for 300 000
time steps corresponding to 750 periods of the driving fre-
guency.

In the interval 5.%X10°<Ra,<6x10* we found a
period-3 window{shown in detail in Fig. &)]. Each of the
three points within the window undergoes a sequence of
period-doubling bifurcations and a reverse cascate es-
pecially the period-3 window on each brapcfhis mimics
) et the behavior of the bifurcation diagram on a larger scale and

reflects its self-similar nature. As Ras further increased
0.5 ! TR . :
5.90 5.95 6.00 there are more periodic window®] and chaotic regimes
104Ra, (C). Finally, at Rg=10, type-l intermittencieg27] (E)
were found. Theoretically, the numbé&t of “periodic or

FIG. 2. (a) Bifurcation diagram showing vertical velocity values laminar phases” between intermittent bursts should be pro-
from a fixed location taken from Poincasections for different portional tos =2 [28]. Heree=Rg,—R3a, . and the transi-
values of Ra and Q=152; (b) detail for 5.9<10"* Ra,<6.0. tion from oscillatory to intermittent flow occurs at Ra. We
A—one-frequency responsB:—subharmonic cascad€—strange  examined this as follows. First we obtaindd the shortest
attractor;D—periodic window;E—intermittency. distance between the closest point of a first return isae
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FIG. 4. First return map for a velocity component at a fixed Qt=0, 7/2, 7, 2w, 57/2, and 3r/2 for the temperature at Ra
location. Inset shows the dependencelain Ra . =42 000. The disturbance rotates around the cavity in a clockwise
sense. The left-hand wall is the hot wall.

Fig. 4) to the diagonalu,, ,=u,, for different values of )

Ra, . Ra, . was then obtained by linear regressisee inset 1S actually driven at)=76, we found that the thermal

in Fig. 4. As d approaches zerdy approaches infinity, i.e., MOde appears as a standing wave with an approximately ver-
there is a transition from an intermittent to a periodic re-tical nodal line which cuts the cavity in half. We conjecture

sponse. For each Rawe determinecN, and found thaN that, at the first period-doubling transition, this lower fre-
wg 0 ' guency mode is parametrically excited and the resulting non-

We isolated the flow and temperature modes using Foul_inear interaction with th€) mode leads to a disturbance that

rier time-series analysis at each spatial location. Figures §avels around the cavity.
and 6 show, respectively, the thernfaland (2/2 modes for
the case Ra=4.2x 10* and 2 =152, i.e., inside the region
of instability shown in Fig. 2. Th&) mode consists of two
waves that travel toward the cavity center from the upper In summary, we have observed transitions to chaotic flow
right (cold) and lower left(hot) corners. The cavity center is in large amplitude thermovibrational convection in a laterally
a node and the diagonal connecting the upper hot corner witheated square cavity subject to vertical gravity. The initial
the lower cold corner is roughly a nodal line. The thermalperiod-doubling transition appears to be due to a parametric
Q/2 mode, in contrast, rotates around the cavity in a clockexcitation. The calculated period-doubling route to chaos is
wise sense. As Rais increased above 3.9410°, perturba- ~characteristic of a Feigenbaum-type scenario. Such routes to
tions to the thermaf) mode lead to the transfer of hot and chaos have been observed experimen{@8,29 and in hy-

cold packets across th@-mode nodal line. These packets drodynamic modelgfor example,[15,30—33). In the ab-
rotate around the cavity requiring two periods of fhenode ~ sence of the type of sinusoidal buoyant forcing examined in

oscillation to complete their cycle. However, when the cavitythis paper, transitions to chaotic flow in the differentially
heated cavity would be expected to take place at Rayleigh

numbers in excess of §0There are only a few examples of
direct numerical solutions of the Navier-Stokes equations
that have examined transitions to chaos in differentially
heated cavitie$5,8,9. These works have focused more on
determining the mechanisms for steady to periodic and peri-
odic to quasiperiodic transitions and do not attempt a de-
tailed characterization of the path toward chaotic flow. It has
been shown33] that, for discrete-time approximations to the
Navier-Stokes equations, one should observe the universally
scaled accumulation of period-doubling bifurcations. How-
ever, we are unaware of any previous results based on direct
numerical simulations of flows in differentially heated cavi-
ties that have been able to capture the details of a period-
doubling bifurcation sequence including period-3 windows
and clear evidence of a self-similar structure to the bifurca-
tion. We found that, in the presence of sinusoidal forcing,
FIG. 5. The temperature modg&,(x)cogQt+¢pa(x)] at Ot early transitiong(that is, at relatively low values of Rado

=0, w/2, 3wl4, =, 3w/2, and 7r/4 for Rg =42 000. A traveling  chaos occur through a sequence of bifurcations that exhibit
wave moves from the corners toward the center. The left-hand walhe features of a Feigenbaum-type scenario. The first transi-
is the hot wall. tion from a single-frequency response to a two-frequency

V. DISCUSSION
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response occurs through a parametric excitation of the subFhe results of this work and the accessibility of such flows to
harmonic mod&1/2 by the driving frequenc{). In addition ~ computational simulation reveal the richness of thermovibra-
to the period-doubling bifurcation sequences we also foundional flows as a fruitful area of research on nonlinear fluid
intermittent behavior near the upper boundary of the unstablglynamics.
region. These flows show characteristics corresponding to a
Pomeau-Manneville type-I intermittency. While it might be

argued that the discretization methods may be responsible

for the observed behavior we emphasize that two entirely
different methods were used to obtain these results. We also We gratefully acknowledge support from the National
emphasize that these flows cannot be considered in terms #feronautical and Space Administration through Grant No.
a small perturbation superimposed on a mean flow that iSNAG3-1740 and from the state of Alabama through the Cen-
close to the Rag=0 flow. Indeed, the mean flow and tem- ter for Microgravity and Materials Research and the Ala-
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